f'(3) = –2
Pembahasan
Limit dan Turunan
Diketahui:
[tex]\begin{aligned}\lim_{x\to a}\frac{f\left(2x^3+1\right)-f\left(2a^3+1\right)}{x^2-a^2}=-1\\\end{aligned}[/tex]
Limit ini adalah bentuk tak tentu, karena jika disubstitusi, akan menghasilkan 0/0.
Kita gunakan aturan L’Hopital.
[tex]\begin{aligned}&{\Rightarrow\ }\lim_{x\to a}\frac{\frac{d}{dx}\left[f\left(2x^3+1\right)-f\left(2a^3+1\right)\right]}{\frac{d}{dx}\left(x^2-a^2\right)}=-1\\&{\Rightarrow\ }\lim_{x\to a}\frac{\frac{d}{dx}\left[f\left(2x^3+1\right)\right]-\frac{d}{dx}\left[f\left(2a^3+1\right)\right]}{\frac{d}{dx}\left(x^2\right)-\frac{d}{dx}\left(a^2\right)}=-1\end{aligned}[/tex]
Baik [tex]f\left(2a^3+1\right)[/tex] maupun [tex]a^2[/tex] adalah konstanta, sehingga turunan pertamanya adalah 0.
[tex]\begin{aligned}&{\Rightarrow\ }\lim_{x\to a}\frac{\frac{d}{dx}\left[f\left(2x^3+1\right)\right]-0}{\frac{d}{dx}\left(x^2\right)-0}=-1\\&{\Rightarrow\ }\lim_{x\to a}\frac{\frac{d}{dx}\left[f\left(2x^3+1\right)\right]}{\frac{d}{dx}\left(x^2\right)}=-1\\&{\Rightarrow\ }\lim_{x\to a}\frac{\frac{d}{dx}\left[f\left(2x^3+1\right)\right]}{2x}=-1\\&{\Rightarrow\ }\lim_{x\to a}\left(\frac{1}{2}\cdot\frac{\frac{d}{dx}\left[f\left(2x^3+1\right)\right]}{x}\right)=-1\end{aligned}[/tex]
[tex]\begin{aligned}&{\Rightarrow\ }\frac{1}{2}\cdot\lim_{x\to a}\frac{\frac{d}{dx}\left[f\left(2x^3+1\right)\right]}{x}=-1\\&{\Rightarrow\ }\lim_{x\to a}\frac{\frac{d}{dx}\left[f\left(2x^3+1\right)\right]}{x}=-2\end{aligned}[/tex]
Kemudian, kita substitusi [tex]x[/tex] menjadi [tex]a[/tex].
[tex]\begin{aligned}&{\Rightarrow\ }\frac{\frac{d}{dx}\left[f\left(2a^3+1\right)\right]}{a}=-2\\&{\Rightarrow\ }\frac{f'\left(2a^3+1\right)}{a}=-2\\&{\Rightarrow\ }f'\left(2a^3+1\right)=-2a\\\end{aligned}[/tex]
Yang ingin dicari adalah nilai [tex]f'(3)[/tex]. Jika [tex]f'\left(2a^3+1\right)=f'(3)[/tex] sehingga [tex]2a^3+1=3[/tex], maka:
[tex]\begin{aligned}&2a^3+1=3\\&{\Rightarrow\ }2a^3=2\\&{\Rightarrow\ }a^3=1\\&{\Rightarrow\ }a=\sqrt[3]{1}=\bf1\end{aligned}[/tex]
Dengan [tex]a=1[/tex], kita peroleh:
[tex]\begin{aligned}&f'(3)=-2\cdot1\\&\therefore\ \boxed{\ f'(3)=\bf{-}2\ }\end{aligned}[/tex]
[tex]\blacksquare[/tex]
[answer.2.content]